Calmodulin-dependent nitric-oxide synthase. Mechanism of inhibition by imidazole and phenylimidazoles.
نویسندگان
چکیده
Calmodulin-dependent nitric-oxide synthase from bovine brain and GH3 pituitary cells is inhibited by imidazole, 1-phenylimidazole, 2-phenylimidazole, and 4-phenylimidazole, with half-maximal inhibition occurring at 200, 25, 160, and 600 microM concentrations of inhibitor, respectively. Imidazole inhibits the maximal velocity of citrulline formation by the enzyme, but does not alter the concentration of arginine, calmodulin, or (6R)-5,6,7,8,-tetrahydro-L-biopterin required for expression of half-maximal activity. Imidazole, 1-phenylimidazole, 2-phenylimidazole, and 4-phenylimidazole had no effect on calmodulin-dependent reduction of cytochrome c by the enzyme at concentrations up to 50-fold higher than those that inhibited citrulline formation. Imidazole inhibited calmodulin-dependent NADPH consumption by the enzyme with dissolved oxygen as the sole electron acceptor, with half-maximal inhibition occurring at a concentration of 225 microM. These observations are consistent with the proposal that imidazole and phenylimidazoles inhibit citrulline formation and oxygen reduction by acting as a sixth coordination ligand of the heme iron. This interaction prevents the formation of the activated reduced species of oxygen necessary for the formation of citrulline.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملSuperoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
The mechanism of superoxide generation by endothelial nitric oxide synthase (eNOS) was investigated by the electron spin resonance spin-trapping technique using 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide. In the absence of calcium/calmodulin, eNOS produces low amounts of superoxide. Upon activating eNOS electron transfer reactions by calcium/calmodulin binding, superoxide formation is in...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملContribution of nitric oxide to the presynaptic inhibition by endothelin ETB receptor of the canine stellate ganglionic transmission.
We previously reported that endothelin (ET) 3 inhibited presynaptically the dog stellate ganglionic transmission. Here, we report the investigation of the possible involvement of nitric oxide pathway in the endothelin-induced inhibition of the ganglionic transmission. The amount of acetylcholine released by preganglionic stimulation for 10 min was concentration-dependently inhibited after expos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 268 13 شماره
صفحات -
تاریخ انتشار 1993